Using Multiple Models to Understand Data
نویسندگان
چکیده
A human’s ability to diagnose errors, gather data, and generate features in order to build better models is largely untapped. We hypothesize that analyzing results from multiple models can help people diagnose errors by understanding relationships among data, features, and algorithms. These relationships might otherwise be masked by the bias inherent to any individual model. We demonstrate this approach in our Prospect system, show how multiple models can be used to detect label noise and aid in generating new features, and validate our methods in a pair of experiments.
منابع مشابه
Comparing ANN and CART to Model Multiple Land Use Changes: A Case Study of Sari and Ghaem-Shahr Cities in Iran
Most of the land use change modelers have used to model binary land use change rather than multiple land use changes. As a first objective of this study, we compared two well-known LUC models, called classification and regression tree (CART) and artificial neural network (ANN) from two groups of data mining tools, global parametric and local non-parametric models, to model multiple LUCs. The ca...
متن کاملEVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS
In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...
متن کاملAn extended of multiple criteria data envelopment analysis models for ratio data
One of the problems of the data envelopment analysis traditional models in the multiple form that is the weights corresponding to certain inputs and outputs are considered zero in the calculation of efficiency and this means that not all input and output components are utilized for the evaluation of efficiency, as some are ignored. The above issue causes the efficiency score of the under evalua...
متن کاملTwo models of inventory control with supplier selection in case of multiple sourcing: a case of Isfahan Steel Company
Selecting the best suppliers is crucial for a company’s success. Since competition is a determining factor nowadays, reducing cost and increasing quality of products are two key criteria for appropriate supplier selection. In the study, first the inventories of agglomeration plant of Isfahan Steel Company were categorized through VED and ABC methods. Then the models to supply two important kind...
متن کاملTarget setting in the process of merging and restructuring of decision-making units using multiple objective linear programming
This paper presents a novel approach to achieving the goals of data envelopment analysis in the process of reconstruction and integration of decision-making units by using multiple objective linear programming. In this regard, first, we review inverse data envelopment analysis models for data reconstruction and integration. We present a model with multi-objective linear programming structure in...
متن کاملEconomics Prioritization of the Allocation of Chahnimeh Reservoir Water Using Fuzzy Multiple-Criteria Decision-Making (FMCDM) Models
The main objective of the present study was to prioritize the allocation of water resources of Chahnimeh reservoirs from economic, social, and environmental perspectives in 2015-2016 season using fuzzy analytic hierarchy process (FAHP) and fuzzy technique for order preference by similarity of an ideal solution (FTOPSIS) as the branches of fuzzy multiple-criteria decision-making (MCDM) models. D...
متن کامل